GMOD: A Dynamic GPU Memory Overflow Detector

Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!

ICollege of Computer Science and Electronic Engineering, Hunan University, Changsha, China,
{dibang,jhsun,haochen,quanzhe}@hnu.edu.cn
?Electrical Engineering and Computer Science, University of California, Merced, dli35@ucmerced.edu

ABSTRACT

Rich thread-level parallelism in GPU has motivated co-running
GPU kernels on a single GPU. However, when GPU kernels
co-run, it is possible that a kernel can leverage buffer over-
flow to attack another kernel running on the same GPU.
There is very limited work aiming to detect buffer overflow
for GPU. The existing work has either large performance
overhead or limited capability to detect buffer overflow.

In this paper, we introduce GMOD, a runtime software
system that detects GPU buffer overflow. GMOD performs
always-on monitoring on dynamically allocated buffers based
on a canary-based design. GMOD introduces a set of byte
arrays to store buffer information for buffer overflow detec-
tion. To enable high performance, GMOD introduces several
techniques, such as lock-free accesses to the byte arrays, de-
layed memory free for high performance memory free, and
efficient memory reallocation and garbage collection for the
byte arrays. Our experiments show that GMOD is capable of
detecting buffer overflows at runtime and has small runtime
overhead (2.9% on average and up to 9.1%).

CCS CONCEPTS

« Security and privacy — Software security engineer-
ing; - Computer systems organization — Single instruc-
tion, multiple data;

KEYWORDS
Buffer Overflows, CUDA, GPU, High Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PACT ’18, November 1-4, 2018, Limassol, Cyprus

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5986-3/18/11...$15.00
https://doi.org/10.1145/3243176.3243194

ACM Reference Format:

Bang Di!, Jianhua Sun!, Dong Li2, Hao Chen!, and Zhe Quan1 .
2018. GMOD: A Dynamic GPU Memory Overflow Detector. In Inter-
national conference on Parallel Architectures and Compilation Tech-
niques (PACT ’18), November 1-4, 2018, Limassol, Cyprus. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3243176.3243194

1 INTRODUCTION

Graphics processing units (GPUs) are widely adopted in
HPC and cloud computing platforms to accelerate general-
purpose workloads. Rich thread-level parallelism in GPU
has motivated co-running GPU kernels on a single GPU.
Co-running GPU kernels improves GPU utilization and max-
imizes system throughput. As a result, co-running GPU ker-
nels has been employed in many scenarios, such as machine
learning model inference [22] and database query [29]. How-
ever, co-running GPU kernels poses a big challenge on how to
guarantee strong isolation between different kernels, when
those kernels are used together without any protection. It is
possible that a kernel can leverage buffer overflow to attack
another kernel running on the same GPU [9, 15].

Despite extensive research over the past few decades,
buffer overflow remains one of the top software vulnerabili-
ties. Many notorious attacks, such as Code Red [30], Morris
Worm [31], and Slammer [32], exploit buffer overflow, and
can result in program crash, data corruption, and security
breaches. Those attacks overwrite heap memory buffer al-
located by applications at runtime on CPU. The heap buffer
overflow also exists on GPUs as introduced in recent stud-
ies [9, 15]. Those studies demonstrate that heap buffer over-
flow on GPU can lead to remote GPU code execution when
dynamically allocated memory is operated improperly.

However, detecting buffer overflow on GPU is non-trivival
due to the execution model and architecture of GPU. First,
a GPU kernel easily has a large number of threads, each of
which can dynamically allocate memory buffers. Hence a
GPU kernel can potentially have a large number of memory
buffers. Given those memory buffers, we must have a system-
atic and scalable approach to collecting buffer information
for overflow detection. The approach should minimize the
usage of GPU resources, such as hardware threads, so that
those resources can be effectively used for computation in

PACT *18, November 1-4, 2018, Limassol, Cyprus

regular GPU kernels. Second, GPU lacks some system support
available on CPU, such as page protection and preemptive
execution (most GPU does not support preemptive execu-
tion). The traditional security mechanism, such as Electric
Fence [18] and StackGuard [7] based on system support on
CPU, cannot work for GPU. Third, detecting buffer overflow
at runtime must have minimum impact on the performance
of GPU kernels. We should avoid adding extra functional-
ity into GPU kernels for detecting buffer overflow. In ad-
dition, given the concurrent execution of GPU kernels and
buffer overflow detection mechanism, we should avoid data
races between the GPU kernels and buffer overflow detec-
tion mechanism, without frequently interrupting the kernels
execution.

Unfortunately, there is very limited work [10, 16] aim-
ing to detect buffer overflow for GPU. The existing work
has either large performance overhead or limited protec-
tion. The existing work, cuda-memcheck [16], can identify
the source and cause of memory access errors in GPU code,
based on intensive code instrumentation. However, cuda-
memcheck is a tool for off-line memory checking. If used
online, cuda-memcheck has high runtime overhead (about
120% [3]), which makes it impractical to be deployed in pro-
duction environments. Another existing work clARMOR [10]
is an overflow detector based on canary (a technique embed-
ding some information into the buffer for overflow detection).
clARMOR has several limitations. First, the detection of over-
flow is performed only after the kernel has completed, which
opens a window for adversaries to perform attacks during
kernel execution, or even makes it possible to restore the
buffer content to avoid detection. Second, clARMOR does
not work for fine-grained, dynamically allocated memory
(i.e., the memory allocated with malloc). Third, L ARMOR
cannot detect buffer overflow that happens at the beginning
of the buffer. Hence, clARMOR provides limited protection
for memory buffers in GPU code.

In this paper, we introduce GMOD, a runtime software
system that supports the following features to detect GPU
buffer overflow for co-run kernels at runtime:

e High efficiency: GMOD incurs small runtime overhead
(2.9% on average and up to 9.1%) and consumes little hard-
ware resource (i.e., threads and global memory), and is
hence practical to be deployed in a production environ-
ment.

e Better detection: GMOD performs always-on monitor-
ing on dynamically allocated user buffers (including fine-
grained memory allocation by malloc). It can detect buffer
overflow that happens at either the beginning or end of
user buffers.

e High transparency: GMOD only requires programmers
to make little change to the application, and does not

Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!

require special system support from compilers, device
driver or hardware.

GMOD is based on canary, and employs a set of tech-
niques to avoid performance overhead. In particular, GMOD
utilizes secret keys and buffer address to generate respective
canaries of each buffer for high security. Moreover, GMOD
introduces a set of byte arrays to store buffer information
for buffer overflow detection. The byte array-based design
works for user kernels with massive number of user threads.
It also avoids performance problems associated with com-
mon alternative solutions (e.g., linked list), because the byte
array stores buffer information continuously in memory for
better data locality, and avoid dereferencing memory pointer.
To enable high performance of our design, we introduce sev-
eral techniques, such as lock-free accesses to the byte arrays,
delayed memory free for high performance memory free, and
efficient memory reallocation and garbage collection for the
byte arrays. All together, these techniques avoid introducing
extra latency into the execution of user kernels.

Our main contributions are summarized as follows:

e We present a dynamic GPU memory overflow detector
based on canaries. To the best of our knowledge, this is the
first tool that can perform on-line detection of overflow
for dynamically allocated GPU buffers. We make GMOD
open source [11].

e We propose effective approaches to enable low perfor-
mance overhead and resource consumption for buffer over-
flow detection;

o We extensively evaluate GMOD using representative bench-
marks, and microbenchmarks for stressing tests. Evalua-
tion results show that GMOD incurs rather small runtime
overhead and can be used as a practical solution to be
deployed in production.

2 BACKGROUND AND MOTIVATION

In this section, we present an overview of buffer overflow,
and GPGPU memory management.

2.1 Buffer Overflow

Buffer overflows are software errors that can lead to program
crashes, data corruption, and security breaches. A buffer over-
flow occurs when a program overruns the buffer’s boundary
and overwrites adjacent memory. Existing countermeasures
against buffer overflows deployed on CPU include bounds
checking [13, 28], canary checking [7], non-executable mem-
ory [20], randomization [4], and so on. In this work, we focus
on canary checking, a lightweight approach, whose effective-
ness has been demonstrated with the wide deployment and
success of StackGuard [7] and its derivation ProPolice [12].
Canaries are known values that are placed outside of a buffer
to assist buffer overflow detection. When a buffer overflows,

GMOD: A Dynamic GPU Memory Overflow Detector

the canary will be corrupted, and a failed verification of the
canary value is therefore an alert of an overflow.

2.2 GPGPU Memory Management

GPU device memory is separated from the host memory on
CPU. GPU device memory is traditionally managed with
runtime APIs like cudaMalloc and cudaFree. Buffers dynam-
ically allocated with these APIs are explicitly transferred to
GPU, and can not be freed during kernel execution. Mod-
ern GPU also supports dynamic memory management using
malloc and free, similar to the traditional counterparts on
CPU. cudaMalloc and cudaFree are coarse-grained memory
management, because the memories are allocated and freed
before and after GPU kernels are launched. malloc and free
are fine-grained, because they allow memory allocation and
free whenever needed in the middle of kernel execution.

GPU applications rarely perform operations like derefer-
encing pointers, and corrupted GPU buffers mostly would
not cause crashes. Hence GPU buffer overflows have often
been left undetected, and the research community has ig-
nored the importance of building tools to deal with memory
overflows on GPU. Recently, two independent works [9, 15]
demonstrate that overwriting dynamically allocated GPU
buffers can be exploited to conduct code injection attacks.
Worse, heterogeneous systems in which CPU and GPU share
the same physical or virtual memory would exacerbate this
problem. In this paper, we focus on addressing GPU buffer
overflows caused by dynamic memory allocation.

In Section 3 (Overview) and Section 4 (Design), we focus
on the fine-grained, dynamic memory management (malloc
and free). In Section 5, we slightly extend the design for the
coarse-grained, dynamic memory management (cudaMalloc
and cudaFree). In Section 6 (Evaluation), we evaluate both
of the dynamic memory management methods.

3 SYSTEM OVERVIEW

This section presents an overview of GMOD. To detect buffer
overflow for fine-grained, dynamic memory allocation, GMOD
consists of three main components: (1) customized memory
allocation and free functions called by the user kernel, (2)
byte arrays to store buffer information, and (3) a guard kernel.
Figure 1 generally depicts GMOD.

The guard kernel is a GPU service that resides on GPU.
Given an application with many user kernels to protect, the
guard kernel is launched at the start of the application, and
detects overflow for any user kernel of the application. The
guard kernel is launched and explicitly terminated by CPU.
The guard kernel is very lightweight: it uses a small amount
of threads to avoid performance impact on the user kernels.

GMOD has a set of byte arrays on GPU global memory.
The byte array is a data structure that saves the information

PACT ’18, November 1-4, 2018, Limassol, Cyprus

.._ Threads -
H8H - BEH;
g oo = Guard kernel
Threads k. = cememimeminm T "
User kerneI: : Byte array I_ﬁ.jl Guard thread |'
,| Threads ; ! :
e —— = : ; : : |
----------------- - ' 1
|| Threads Byte array Ié__a Guard thread ||
User kernel: P NS s SN ’
i Threads

Figure 1: Architectural overview of GMOD.

of user buffers. The guard kernel examines the byte arrays
to detect buffer overflow. Each byte array is associated with
a thread in the guard kernel (i.e., a guard thread) for the
examination. The information of user buffers allocated in a
user thread is stored in a specific byte array. The association
between the user thread and byte array is based on the user
thread ID. Many user threads can be associated with the
same byte array (and hence the same guard thread). The
above design of guard thread and byte array is featured with
using limited hardware resource (i.e., GPU threads) to detect
buffer overflow for massive number of user threads.

GMOD has two customized memory management func-
tions, mallocN and freeN. These two functions extend the
original functionalities of malloc and free to collect neces-
sary information for overflow detection and garbage col-
lection. These two functions are called by the user kernel.
mallocN allocates a memory space (i.e., a user buffer) and
then places canaries at two ends of the user buffer to de-
tect overflow. User threads concurrently calling mallocN can
concurrently insert buffer information into the byte arrays
based on a lock-free design for high performance. The buffer
information is used by the guard threads to detect buffer
overflow. freeN flags the user buffer as free, but does not re-
ally deallocate memory. Instead, the guard kernel performs
actual memory reclamation. Such method of delayed mem-
ory deallocation improves performance of the user kernel
and simplifies the design of the guard kernel.

To detect buffer overflow, the guard threads repeatedly
scan the set of byte arrays. In each scan, the guard threads
first perform memory reallocation and garbage collection to
manage memory space usage for the byte arrays, when the
free space of the byte arrays is not enough. After that, the
guard threads get buffer information from the byte arrays,
and locate canaries to detect buffer overflow. If no overflow
is found and the current buffer has been marked as free by
the user kernel, GMOD releases the buffer and flags corre-
sponding buffer information as expired to avoid future scan.

Figure 2 generally depicts the overflow detection algo-
rithm. We describe our design in details as follows.

PACT *18, November 1-4, 2018, Limassol, Cyprus

2 Garbage

[Start collection |
Free space No Reallocation
8 enoug memory

Yes

Ye
Get buffer >
information uffer freed?

No
‘ Yes
Alter buffer
information

Figure 2: GMOD Algorithm overview.

No

Check buffer

No Free buffer

4 DESIGN AND IMPLEMENTATION

4.1 Guard Kernel

The guard kernel must be lightweight, and also be able to
manage a large number of user threads. In our design, the
guard kernel has just one thread block, and runs in parallel
with the user kernel by CUDA stream. A user thread is as-
sociated with a guard thread in charge of detecting buffer
overflow for the user thread. Associating a user thread with
a guard thread is based on the global thread ID of the user
thread. The global thread ID is calculated based on the user
kernel configuration, i.e., the number of threads in a thread
block (blockDim), the user thread ID (threadldx) and user
thread’s block ID (blockIdx). For example, for a user kernel
with one-dimensional thread blocks, the global thread ID for
a user thread is global_tid = threadldx.x + blockDim.x =
blockIdx.x. Assuming there are m guard threads, then the
user thread with a global thread ID (global_tid) is assigned
to a guard thread whose ID is global_tid mod m. In general,
we assign user threads to guard threads in a cyclic manner.
We do not assign user threads in a block manner, because
we want to avoid load imbalance between guard threads. In
particular, we notice that some thread blocks of a user ker-
nel can have much more dynamic memory allocation than
other thread blocks. Using the block manner, some guard
threads may have to detect buffer overflow for many more
user buffers than other guard threads, which introduces load
imbalance.

The number of guard threads in GMOD has an impact
on overflow detection latency and user kernel performance.
The overflow detection latency is defined as the elapsed time
from the occurrence of buffer overflow to detection. Given
a fixed number of user buffers to protect, a larger number
of guard threads results in a smaller number of buffers per

Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!

Head | ; : : Tail
canary | Size : User buffer ! canary

Figure 3: Buffer structure

guard thread, which reduces the detection latency. However,
a larger number of guard threads can negatively impact the
performance of user kernel, due to competition on hardware
resources (e.g., caches and global memory). Such tradeoff
between detection latency and performance exists in any
buffer overflow detection algorithm. We study such tradeoff
in Section 6.3 using various number of guard threads for 40
use cases, and empirically choose 32 as the number of guard
threads for GMOD. Using 32 guard threads can effectively
detect overflow and has small runtime overhead (2.9% on
average and up to 9.1%).

4.2 Buffer Structure

The user buffer protected by GMOD should be allocated with
the GMOD’s customized memory allocation function. The
user buffer includes not only memory space for user data, but
also buffer information (particularly, canary and buffer size).
Figure 3 depicts the buffer structure allocated by GMOD’s
customized memory allocation function.

In particular, the user buffer is surrounded with two words
called head canary and tail canary. In this way, a buffer
overflow is detected when the tail or head canary is corrupted.
There is a size field after the head canary. This field is used
to locate the tail canary based on the buffer starting address.
The size field is encrypted by XORing the buffer size and a
secret key. The head canary is the encryption results of a
secret key (named as the head secret key), the buffer size and
buffer starting address. The tail canary is built in the same
way as the head canary except using a tail secret key. All the
keys are fully random numbers.

GMOD encrypts the size field to effectively prevent at-
tackers from obtaining the overall structure of buffer. If the
decrypted size field is not consistent with the size value in
the head canary, a buffer overflow is detected. Furthermore,
each canary is unique, because it is generated based on the
buffer address. Thus, even if the canary of a buffer is leaked, it
is difficult to forge another buffer’s canary without knowing
size and address of the buffer.

4.3 Byte Array

The byte array is designed to store buffer information, in-
cluding buffer addresses and whether buffers are released.
We use array instead of dynamic data structures (e.g., linked
list) to store the buffer information to enable good data local-
ity. In particular, the byte array is preallocated by the guard
thread, before the allocation of any user buffer. Once a user
buffer is allocated, its buffer information is sequentially fed
into a byte array. Hence, a guard thread can access the buffer
information of many user buffers with good spatial locality.
Using a dynamic data structure, such as linked list, can easily

GMOD: A Dynamic GPU Memory Overflow Detector

__device__ void insertBuffInfo(uint64_t address)
{
int32_t old_idx, tmp_idx;
int8_t* old_ptr;
int8_t header=1;
/% Insert into byte array with lock—free operation =/
do {
old_idx = byte_array-—->idx;
old_ptr = byte_array->ptr;
tmp_idx = old_idx + 9;
} while ((old_idx) !'= atomicCAS(&byte_array->idx,
old_idx, tmp_idx));
memcpy (old_ptr + old_idx + 1, &address, 8);
/% Guarantee finishing insertion of buffer
information before decompressing it =/
memcpy (old_ptr + old_idx, &header, 1);
}

Figure 4: A code snippet that inserts buffer informa-
tion into a byte array. As a data structure, the byte ar-
ray has two extra fields to facilitate insertion: the field
idx that points to the first free byte in the byte array,
and the field ptr that points to the beginning of the
byte array.

cause random memory access with bad data locality. Fur-
thermore, a guard thread can scan a byte array without any
pointer dereferencing, while using a dynamic data structure,
the guard thread usually has to do so. Because dereferencing
pointers is more expensive than using index of a byte array
to access array elements on GPU, using byte array improves
performance. However, using a preallocated byte array loses
the flexibility of a dynamic data structure. We need to dy-
namically grow or shrink the byte array, when it runs out of
array space or has too much useless buffer information. We
discuss our mechanism to dynamically manage byte array
space in Section 4.6.

Each guard thread is in charge of one byte array and re-
peatedly read the array to get buffer information. A byte
array collects the buffer information for a specific number
of user threads. Assuming that the total number of threads
from user kernels is M and the total number of guard threads
is N, then each byte array collects the buffer information for
M/N user threads.

The structure of a byte array is as follows (see Figure 5). A
byte array contains buffer information for a number of user
buffers (see “buffer info” in Figure 5). Each buffer information
consists of a buffer address (8 bytes) and a header (1 byte).
The header is used to indicate if the user buffer is expired
or not. A user buffer is expired, if the buffer is released by a
guard thread (not user thread). If a user buffer is expired, the
guard kernel skips its information for overflow detection. The
header can also be used to avoid a read-after-write hazard
(see Section 4.5 for details).

PACT ’18, November 1-4, 2018, Limassol, Cyprus

(header]
Figure 5: An illustration example for a byte array.

address

4.4 Memory Allocation and Free

We extend CUDA’s original dynamic memory management
functions malloc and free. To make the discussion easy, we
use mallocN and freeN to represent our version.

mallocN allocates memory using the original malloc func-
tion. Furthermore, mallocN expands the allocated memory
space to accommodate extra information for the user buffer.
Such information includes canaries and buffer size (see Sec-
tion 4.2). After the memory space allocation, mallocN insert
buffer addresses into the byte array and set the correspond-
ing header field as 1. mallocN introduces more operations
than regular malloc. However, those operations are light-
weight and have ignorable performance impact on the user
kernel execution time, as shown in Section 6.

freeN uses a two-step algorithm to free memory. In the
first step, the head canary of the user buffer is updated with
a new value (called free canary). The free canary is the en-
cryption result of the old head canary with a secrete key. The
free canary can be used to detect the double free problem
(see Section 4.8 for details). freeN returns without actually
releasing the memory.

The second step happens after freeN returns. In particular,
when a guard thread examines the buffer to detect overflow
and finds that a buffer has a free canary, the guard thread
releases the buffer after performing canary verification. The
guard thread also resets the header field to 0 (expired buffer)
in the corresponding byte array to avoid using the informa-
tion of the freed user buffer in subsequent execution.

We use the above two-step algorithm, because it simplifies
our design for memory deallocation and improves perfor-
mance. In particular, using guard threads to release user
buffer removes overhead of releasing buffer from the user
threads, hence improving performance. If we ask user threads
to release memory, then user threads must introduce a mech-
anism (e.g., a hash table) to efficiently locate user buffer
information in byte arrays and update it. Such mechanism
complicates our design while introducing extra overhead
into critical path of the user kernel.

The two-step algorithm has a drawback: memory deallo-
cation is delayed. However, the delay is short and no longer
than the time of scanning a byte array for once by a guard
thread. Since the time of scanning a byte array for once is
very short (typically much shorter than the kernel execution
time), the freed memory can be timely released.

PACT *18, November 1-4, 2018, Limassol, Cyprus

4.5 Lock-free Insertion

We describe how inserting buffer information in byte arrays
happens in details in this section. Figure 4 generally explains
the algorithm with a code snippet. The algorithm is featured
with a lock-free design to handle potential data races on the
byte array.

The algorithm locates a position within a byte array to
insert header and address. The major challenge to do so
is to coordinate concurrent requests for inserting multiple
user buffer information from multiple user threads. The algo-
rithm uses a lock-free design (Lines 7-12) based on atomicCAS
which is a hardware-based atomic operation. In particular,
each user thread tries to atomically update the byte array
without relying on explicit locking to coordinate concurrent
updates to the byte array.

After the position to insert the header and address is lo-
cated, the algorithm inserts the header and address into the
byte array by memcpy (Lines 13-16). Note that we do not use
locking to coordinate concurrent updates from multiple user
threads, because the position where the header and address
will be inserted has been secured in Lines 7-12. We also do
not use locking to coordinate between the guard thread that
will read the buffer information and the user thread that
is updating the byte array. Instead, we control the order of
adding the header and address to avoid using locking. In par-
ticular, we add the address first and then the header. Without
setting up the header first, the guard thread is not able to
read the new buffer information, hence we avoid potential
data races between the user thread and guard thread.

4.6 Garbage Collection and Memory
Reallocation

Using byte arrays, we must dynamically manage memory
space. In particular, we must dynamically expand capacity
of the byte arrays to accommodate information of new user
buffers, and reclaim memory space of those useless buffer
information (i.e., garbage collection) in byte arrays. We in-
troduce a memory space management mechanism with min-
imized performance impact on user threads. We describe our
dynamic memory management as follows.

A byte array initially has s (s=20 KB) to accommodate
buffer information for 2000 user buffers. When the byte ar-
ray has only x% free space (x=20 in our implementation), the
guard thread doubles the size of the byte array (i.e., memory
reallocation) and performs garbage collection. Such memory
management does not wait for the drain of the byte array.
Instead, memory management is proactive, and always pro-
vides sufficient space in the byte array to accommodate new
buffer information. In addition, because of the SIMD nature
of GPU, 32 threads run concurrently on a GPU multiproces-
sor. This indicates that 32 guard threads can concurrently

Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!

N - Y R S N

11
12
13
14

16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

__device__ byteArray* new_barray[GUARD_THREADS];
__device__ byteArray* old_barray[GUARD_THREADS];
__device__ void garbageCollection()
{

int tid = threadIdx.x+ blockDim.x » blockIdx.x;

new_barray[tid] = new byteArray();
new_barray[tid]->prt allocateMemory ();
new_barray[tid]—->idx 0;
__syncthreads ();

/% The variable byte_array is a pointer of
the type byteArray accessed by each guard

old_barray[tid] = byte_array;

byte_array = new_barray[tid];

thread =/

for (int32_t i = 0;
int8_t header = 0;
/* Get the header =/
memcpy (&header, old_barray[tid]->ptr + i,
/* Increase the increment i =/

i += 9;

i < old_barray[tid]—>idx;) {

IDH

if (header != 0) {

int32_t old_idx, tmp_idx;

do {
old_idx = byte_array-—->idx;
tmp_idx = old_idx + 9;

} while ((old_idx) atomicCAS (&byte_array—>idx,
old_idx, tmp_idx));
old_barray to byte_array =/
+ old_idx + 1,
+ i -8, 8);
+ old_idx, &header,

/% Copy the content of
memcpy (byte_array—>ptr
old_barray[tid]—>ptr
memcpy (byte_array—>ptr
}
}
__syncthreads ();
. /% Free the old byte array =/

;

Figure 6: A code snippet for garbage collection.

perform garbage collection and memory reallocation on 32
byte-arrays. Such concurrency in memory management re-
duces memory management overhead.

We evaluate our choice of s (20KB) and x (20) with stress
testing with intensive memory allocation (see Section 6.2).
Our evaluation shows that our choice of s and x does not
block user threads for memory management in the byte array,
and hence always provide sufficient space.

To reclaim memory space for garbage collection, we do
not recycle those elements of the byte array that have use-
less buffer information, because this method requires the
user threads to examine which element of the byte array has
useless buffer information and hence introduces excessive
overhead into the user threads. Instead, our method aggre-
gates the valid buffer information into a new byte array
without garbage, for garbage collection.

We use the code snippet in Figure 6 to further explain
garbage collection. Before garbage collection, each guard
thread allocates a new byte array (new_barray) that doubles
the memory size of the old byte array. The byte array after

GMOD: A Dynamic GPU Memory Overflow Detector

garbage collection will be in new_barray. The byte array be-
fore garbage collection is saved in an array old_barray (Line
13); Garbage collection happens in a loop (Lines 16-35). In
the loop, the guard thread reads user buffer information from
old_barray, checks if each user buffer is freed or not (Lines
23), and copies the valid buffer information from old_barray
to the new one (Lines 31-33).

To coordinate concurrent accesses to the byte array from
the user kernel (inserting addresses) and guard kernel (mov-
ing valid addresses from the old byte array to the new one),
we introduce a lock-free design, shown as two loops in Lines
25-29 in Figure 6 and Lines 7-12 in Figure 4. The two lock-
free while loops cooperate to guarantee the correctness of
concurrent insertions and garbage collection.

We use the lock-free loop in Figure 4 to discuss a case
with data race and explain the effectiveness of the lock-free
design. In this case, replacing byte_array with new_barray

by the guard thread (Line 14 of Figure 6) competes with
reading byte_array (Line 8 in Figure 4) by the user thread,
creating a read-after-write hazard. Assume that a user thread
already obtains the index (Lines 8 in Figure 4) before garbage
collection happens. Afterwards, garbage collection happens
and the byte array is updated. The old index is not valid any
more. However, we have no problem for program correctness
in this case, because of the following reason. When the user
thread runs to Line 11 in Figure 4, the old buffer index ob-
tained by the user thread will not be equal to the new buffer
index (i.e., the return value of atomicCAS). The user thread
will try to get the buffer index again, which ensures that the
user thread always obtains the most recently updated buffer
index to insert the address.

We use the lock-free loop in Figure 4 to discuss another
case with data race to explain the effectiveness of the lock-
free design. In this case, replacing byte_array with new_barray
by the guard thread (Line 14 of Figure 6) competes with using
memcpy (Lines 13-16 in Figure 4) to write the header and
address into the byte array by the user thread, creating a
write-after-read hazard. Assume that a user thread already
obtains an index of the old byte array for inserting new
buffer information (Lines 11 and 12 in Figure 4). Afterwards,
garbage collection happens and the byte array is updated.
In this case, the user thread inserts the new buffer informa-
tion into the new byte array but uses the index of the old
byte array. However, we still have no problem in this case,
because of the following reason. Line 9 in Figure 4 stores a
pointer of the old byte array and subsequent memcpy uses it
to insert the new buffer information, which ensures correct
insertion of the new buffer information into the old byte
array. Although the new buffer information is inserted into
the old byte array, the subsequent garbage collection copies
the new buffer information from the old byte array to the

PACT ’18, November 1-4, 2018, Limassol, Cyprus

new byte array, hence the new buffer information can still
be correctly placed into the new byte array.

4.7 Detection of Buffer Overflow

The guard kernel is responsible for overflow detection. To
do so, the guard thread first reads the header within a buffer
information in a byte array. If the header indicates that the
buffer has expired, the guard thread moves on to the next
buffer information and ignores the analysis on the current
buffer. Otherwise, the guard thread uses the address field in
the buffer information to obtain user buffer address.

After obtaining the user buffer address, it is straightfor-
ward to conduct overflow detection. If the buffer has been
freed in freeN, the guard thread releases this buffer after
verifying the canaries, and sets the header field to 0 (expired).
Otherwise (the buffer is still in use), the guard thread per-
forms canary verification to detect potential overflows. We
explain the canary verification in details as follows.

When a buffer is allocated, the head and tail canaries are
constructed. The head canary is constructed as follows.

head canary = size ® buf fer address ® head secret key (1)

The tail canary is constructed in the same way, except that
it uses a different secret key. For the canary verification, the
guard thread firstly decrypts the size field embedded in the
front of the user buffer, and then recalculates the canaries
based on the buffer address, buffer size and secret keys. The
guard thread then compares the recalculated canary with
the canaries in the user buffer for canary verification. If the
canaries or the size field are corrupted, the verification fails,
indicating the occurrence of buffer overflow.

4.8 Detection of Double Free

Different from the detection of overflow by the guard threads,
detecting double free is conducted in freeN by the user
threads. The basic idea of detecting double free is to introduce
a canary, named free canary. The user thread replaces the
head canary with the free canary to indicate that the buffer is
freed. Note that we ask the user thread (not the guard thread)
to replace the head canary and detect double free, because
it is the user thread that initiates the operations of buffer
freeing. The guard thread cannot easily know whether a free
operation happens, after the buffer is already marked as free
by the user kernel. More details on the detection of double
free are as follows.

When a buffer is freed, the user thread firstly decides if
the head canary of the buffer is equal to the calculated free
canary based on Equation 2. If yes, the buffer has been freed
and the head canary has been replaced with free canary,
which indicates that double free is detected. If no (i.e., the
head canary is not equal to free canary based on Equation 2),

PACT *18, November 1-4, 2018, Limassol, Cyprus

then we replace the head canary with free canary based on
Equation 3. The reason why we use Equation 3 (not Equation
2) here is as follows:

free canary = (2)
size © address © head secret key ® free secret key
free canary = head canary @ free secret key 3)

Simply speaking, using Equation 3 enables detection of
buffer overflow during the detection of double free. If the
head canary is corrupted, then using Equation 3, the corrup-
tion in the head canary will be carried by the free canary
and detected by the guard thread later on. Using Equation
2, the corruption in the head canary will not be carried by
the free canary and cannot be detected by the guard thread.
Note that if the head canary is not corrupted, Equations 2
and 3 are mathematically the same (given Equation 1), hence
using Equation 3 does not negatively impact the detection
of double free.

4.9 Discussions

Leveraging shared memory. Our current implementation
only uses global memory. In fact, shared memory is much
faster than global memory, and it could be leveraged to im-
prove the performance of GMOD, such as allocating byte
array in shared memory. However, using shared memory to
detect buffer overflow will reduce the availability of shared
memory for user kernels. Given the limited capacity of shared
memory, we do not use shared memory in GMOD.

Buffer overflow detection on unified memory. Uni-
fied memory is a memory address space accessible from both
CPU and GPU. GPU memory buffer allocated on the uni-
fied memory should be able to be protected by the existing
overflow detection mechanisms on CPU [13, 28, 34]. How-
ever, those mechanisms can cause large overhead, because
of memory paging. Memory paging enables automatic page
migration between host and GPU memories, providing an
illusion of unified memory. The detection mechanisms on
CPU and computation on GPU can concurrently access the
memory buffer in unified memory, and hence cause frequent
memory paging, which lose performance. GMOD does not
cause memory paging, because the guard kernel runs on
GPU (not on CPU). We leave the evaluation of GMOD for
unified memory as our future work.

5 DESIGN EXTENSION

We slightly extend our design to detect buffer overflow for
coarse-grained memory management. The design extension
includes the following three parts.

First, we have a customized memory management func-
tion cudaMallocN to replace cudaMalloc. cudaMallocN allo-
cates memory buffer with extra space to place canaries.

Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!

Table 1: Benchmarks for evaluating GMOD. Num.ker
is the number of user kernels for evaluation.
Sum.Allocation is total number of memory allo-
cation in all kernels. Sum.Allocation is related to the
number of user threads in a benchmark, so we report
the maximum number of memory allocation in our
evaluation.

Benchmark Num.ker | Sum.Allocation
alloc-dealloc (ad) [27] 1 20K
alloc-cycle-dealloc (acd) [27] 5 100K
grid-point (gp) [26] 1 20K
add-string (ads) [26] 3 60K
random-graph (rg) [26] 1 60K
fft [23] 1 3
bfs [33] 26 3

Second, within the user kernel, the user needs to add one or
more function calls insert_buffer_info, right before the ker-
nel computation. Each insert_buffer_info fills in canaries
and inserts buffer information for a memory buffer into a
byte array. Note that cudaMallocN cannot place canaries and
insert buffer information as mallocN, because it runs on CPU
and cannot easily access GPU memory. insert_buffer_info
adds overhead into the user kernel, but the overhead is small
(we quantify it in the evaluation section) and cudaMalloc
often has a few occurrences in an application.

Third, we have a customized memory management func-
tion cudaFreeN to replace cudaFree. cudaFreeN includes an
implicit cudaDeviceSynchronize before freeing memory buffer.
This is used to ensure that we do not free any coarse-grained
memory buffer until the guard kernel and user kernels are
done. Otherwise, a guard thread may access a memory buffer
which is already released by cudaFreeN.

In general, GMOD has high transparency. To detect buffer
overflow, the user needs to replace memory allocation and
free APIs with our customized APIs. For coarse-grained mem-
ory management, the user also needs to add a few function
calls within user kernels.

6 EVALUATION
6.1 Experimental Setup

Our experiments are performed on a machine with an In-
tel Xeon CPU E5-2609 (1.9 GHz), and an NVIDIA GM200
GeForce GTX TITAN X discrete GPU. The machine has
Ubuntu 14.04.4 LTS and CUDA runtime 7.5.

We use five benchmarks and two micro-benchmarks to
evaluate GMOD. The benchmarks are summarized in Ta-
ble 1. Those benchmarks use the default kernel configura-
tions, unless indicated otherwise. The benchmarks alloc-
dealloc, alloc-cycle-dealloc, add-string, random-graph, and
grid-point are called ad, acd, ads, rg, and gp for short in the
figures in this section. Among the seven benchmarks, bfs

GMOD: A Dynamic GPU Memory Overflow Detector

10 60
ad | " ad+GMOD(96) ol = acd ‘ acd+dMOD§ge)
~ 8r ad+GMOD(32) —— a(l+GMODElZB) 1 2 acd+GMOD(32) —— acd+GMOD(128)]
£ 6L ad+GMODEGA; 4 & wf acd+GMOD(64) 1
E s —
E E L —]
B, — E
0 ’//T/’/Tk 10 I 1 1 |
4K 8K 12K 16K 20K 4K 8K 12K 16K 20K

Number of user threads (5 iterations)

(b) alloc-cycle-dealloc

Number of user threads

(a) alloc-dealloc
Figure 7: Performance results for two stress tests (pre-
liminary performance study). The numbers in paren-
thesis in the figures are the number of guard threads.

and fft have coarse-grained, dynamic memory management,
and the other five benchmarks have fine-grained one. All
results reported in this section are average values of 20 runs.

The reasons why we use those benchmarks are as follows.
We use the two micro-benchmarks [27], because they have
very intensive memory allocations that allow us to evaluate
GMOD performance with stress testing. We use the three
benchmarks (gp, ads and rg) from Halloc [26], because they
support fine-grained memory allocation on GPU which can
not be found in the common GPU benchmark suites, such
as Parboil [23], Rodinia [6], SHOC [8] and NUPAR [25]. The
fft from Parboil [23] and the bfs from [33] are representative
benchmarks for coarse-grained memory allocation, because
both of them have about 10 memory allocations and are com-
plicated enough. In addition, their performance is sensitive
to the disturbance from any co-run benchmark.

6.2 Preliminary Performance Study

As a preliminary performance study, we use two micro-
benchmarks (alloc-dealloc and alloc-cycle-dealloc) that have
very intensive memory allocations to evaluate GMOD under
stress tests. Figures 7a and 7b shows the results.

Using GMOD, instead of performance loss, we see perfor-
mance improvement, comparing to the cases without GMOD.
For example, with 32 and 64 guard threads for alloc-dealloc,
we have 55.4% and 58.4% performance improvement, respec-
tively; With 32 and 64 of guard threads for alloc-cycle-dealloc,
we have 33.8% and 32.8% performance improvement, respec-
tively. The performance improvement comes from the asyn-
chronous design of freeN that delegates memory deallocation
to the guard kernel.

Figure 7a reveals that increasing the number of guard
threads leads to better performance (shorter execution time)
in alloc-dealloc, although in many cases there is no big perfor-
mance difference between different cases. Having more guard
threads can result in better performance, because GMOD has
more resources (e.g., byte arrays and guard threads) to detect
buffer overflow. More byte arrays also indicate less competi-
tion between user threads when concurrent updates on byte
arrays happen. However, Figure 7b reveals that increasing
the number of guard threads leads to worse performance in
alloc-cycle-dealloc. We attribute this observation to resource

PACT ’18, November 1-4, 2018, Limassol, Cyprus

contention on memory (bandwidth and cache) between user
threads and guard threads. A larger number of guard threads
cause more resource contention, hence can lose performance.
We further discuss the effects of number of guard threads in
the next section.

6.3 Sensitivity Study

In this section, we study how the detection latency and user
kernel performance are sensitive to number of guard threads.

Study on detection latency. The same as other tools to
detect buffer overflow on CPU [1, 2, 34], GMOD does not
provide real-time detection. To study the detection latency,
we use five benchmarks. For each benchmark, we use differ-
ent numbers of guard threads for GMOD execution. Figure 9
shows the estimated detection latency which is the aver-
age execution time of a guard thread to scan its byte array
for once. The reason why we use such estimated detection
latency is as follows.

The guard thread repeatedly scans the byte array. Any
buffer overflow should be detected by the guard thread in
one of those scans. In addition, the execution time of a guard
thread to scan the byte array for once depends on the length
of byte array. Since the length of byte array is dynamically
changed at runtime, we use the average execution time as
a statistical quantification on the detection latency. This
approach has been commonly used in existing work [24, 34].

Figure 9 shows that the detection latencies of almost all
cases (38 out of 40 cases) are less than the execution time of
user kernels, which demonstrates that our detection latency
is short enough in most cases. Only two cases (grid-point
and random-graph when the number of guard threads is 32)
have detection latency longer than the execution time of user
kernels, but increasing the number of guard threads (larger
than 32 guard threads) makes detection latency shorter than
the user kernel execution time.

Note that although GMOD cannot detect overflow before
the user kernel finishes in a few cases, GMOD can still detect
overflow for those cases after the user kernel finishes. In
particular, when the user kernel finishes, the user buffer
with overflow has been freed by a user thread using freeN.
However, the user buffer with overflow still exists in GPU
global memory, because of our design of the delayed free
(Section 4.4). The guard thread can still detect overflow even
after the user kernel finishes.

Study on user kernel performance. We study the im-
pact of the guard thread number on user kernel performance.
Figures 8a-8e shows the results with different number of
guard threads and user threads. Table 2 reports average
performance improvement (or degradation) for each guard
thread number (32, 64, 96 and 128), based on Figures 8a-8e.

PACT ’18, November 1-4, 2018, Limassol, Cyprus Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!
T T T 70 T T
10 |~ gp gp+GMOD(96) & 60 | ads ads+GMOD(96 A
sl gp+GMOD(32) —— gp+GMOD(128) i + ads+*GMOD(32) —— ads+GMOD(128)
E gp+GMOD(64) 2 50 - —o— ads+GMOD(64) . '
S 6F . % 40 4
2 20 -
0 i i i 104 i i i]
4K 8K 12K 16K 20K 4K 8K 12K 16K 20K
Number of user threads Number of user threads
(a) grid-point (b) add-string
» ' “GMOD(96) | 03) ! “ b bfs+GMOD(96)
] rg+ . “ bfs s+
zg I rg+GMOD(32) —— rg+GMOD(128) 0.25 L EEE+GMOD(32) e gt;gmggﬁ%) i 35 bfs+GMOD(32) —— bfs+GMOD(128)
g - rg+GMOD(64) 2 o, | fGMOD(sY z % bfs+GMOD(64) N
& E 0 3 25
g s E o5 —1 & N
& 10 E . — 20 \
s - _ 0.1 F’/H"-'__——A 15 g
0 i i 1 0.05 10

8K 12K

Number of user threads
(c) random-graph

16K 20K 4K 8K

Number of user threads

() fF

12K 16K 20K 4K 8K 12K

Number of user threads

(e) bfs

16K 20K

t

Figure 8: Performance (execution time) of five benchmarks with GMOD. The numbers in parenthesis in the figures

are the number of guard threads.

20 T T
*— ads fft

- 15 & gp —o— bfs
g o
< 10
B
& 5

it —

0 . S _ _

32 64 96 128 192 256 320 384

Number of guard threads
Figure 9: Average execution time of a guard thread to
scan its byte array for once.

Table 2: Average performance improvement/loss for
five benchmarks with GMOD. This table is based on
Figures 8a-8e. The first row of the table is the number
of guard threads. A positive percentage number repre-
sents performance improvement, while a negative one
represents performance degradation.

32 64 96 128
grid-point 43.8% | 37.3 % | 31.7% | 29.2%
add-string 17.8% | 17.8% | 11.3% | 15.6%
random-graph | 30.6% | 22% 14% | 5.4%
fft -4.8% | -6.0% | -6.7% | -7.1%
bfs -1.1% | -1.2% | -1.5% | -1.7%

In general, GMOD causes small performance lose (less
than 5%) in all cases, except fft (less than 12%). Among 100
evaluation cases shown in Figures 8a-8e, 60% of them have
performance improvement, due to the asynchronous execu-
tion of freeN and ignorable performance overhead of GMOD.
bfs and fft have performance loss with GMOD, because they
use synchronous memory free (cudaFree). We also notice
that using a larger number of guard threads, the perfor-
mance loss in bfs and fft (or performance benefit in other

10

T T T
| -
L cuda memchecg 4.7

Normalized execution time

1.1
ads

ad

bfs
Figure 10: Performance evaluation of cuda-memcheck.
Performance is normalized by the execution time
without any overflow detection.

acd fft

gp g

benchmarks) due to GMOD becomes larger (or smaller). In
summary, using 32 guard threads, the performance loss is
2.9% on average (up to 9.1%) in all cases.

Based on the above study on the detection latency and user
kernel performance, we empirically use 32 threads as the num-
ber of guard threads for GMOD, because 32 guard threads
bring low detection latency and small performance impact
on user kernel performance. We do not use less than 32 guard
threads, due to warp-based scheduling nature in GPU.

Comparing with the existing work. To show the per-
formance benefit of GMOD, we evaluate the performance of
related work, cuda-memcheck. Figure 10 shows the execution
time of cuda-memcheck, normalized by the execution time
without any overflow detection. In general, cuda-memcheck
has rather large overhead (at least 10% and up to 289.5x),
much larger than GMOD.

6.4 Evaluation of Benchmarks Co-Run

To study the performance of GMOD with co-run kernels,
we choose any two benchmarks from the five benchmarks

GMOD: A Dynamic GPU Memory Overflow Detector

for co-run. The benchmarks grid-point, add-string, random-
graph, fft, and bfs use 4K, 6K, 8K, 10K and 12K user threads
respectively, to enable sufficient co-run. In total, we have ten
co-run cases. We enable co-run of those benchmarks based
on CUDA stream.

Figure 12 shows the performance for those ten co-run
cases. The performance of a co-run case is the execution
time of finishing two benchmarks. In general, GMOD does
not bring performance loss except the case of co-running fft
and bfs (0.5% performance loss).

Memory cost of GMOD. For each user buffer, GMOD
introduces 24 bytes for canaries and 9 bytes for storing buffer
information in a byte array. This is a rather small memory
cost. Since there is no canary-based overflow detector for
dynamically allocated buffers on GPU, we compare GMOD
with a canary-based overflow detector on CPU [34] in terms
of memory cost. This detector on CPU is a state-of-the-art
overflow detector on CPU. This detector on CPU introduces
24 bytes for canaries and 16 bytes for storing address, which
consumes larger memory than GMOD.

6.5 Overhead of the Customized malloc

Different from typical usage scenarios where mallocN and
freeN come in pairs, in this experiment, we unveil the over-
head of mallocN by hiding the influence of freeN. We separate
the performance impact of mallocN from that of freeN, be-
cause freeN can bring performance benefit while mallocN
cannot. We do not evaluate fft and bfs, because they do not
use mallocN, and cudaFreeN in fft and bfs does not bring per-
formance benefit. Note that the overhead of cudaMallocN and
insert_buffer_info for coarse-grained memory management
have been included and evaluated in Figure 8.

Figures 11a-11c show the results. The results show that
the average overhead of our mallocN is about 10.9% (random-
graph), 6.2% (add-string), and 5.1% (grid-point). In general,
the customized malloc results in overhead less than 11%. This
overhead is relatively small. This demonstrates the effective-
ness of our high performance design. More importantly, the
overhead of the customized malloc can be easily hidden by
the performance benefit of the customized free, as shown in
Figures 8a-8c.

Note that the overhead of using CUDAmallocN is typically
much smaller than using mallocN, because mallocN, as a fine-
grained memory allocation, can happen very frequently in
the middle of user kernel execution, while CUDAmallocN only
happens a couple of times before kernel execution.

6.6 Effectiveness of GMOD

We evaluate the effectiveness of GMOD to detect buffer over-
flow on GPU (Table 3). We use three experiments for our
study. The three experiments are also used in the existing
studies [9, 15] to demonstrate the existence of GPU buffer

11

PACT ’18, November 1-4, 2018, Limassol, Cyprus

Table 3: Using the three buffer overflow benchmarks
to evaluate the effectiveness of GMOD

Kernel time | Detection latency | Detected?
Single kernel (fine) 0.947 ms 0.0145 ms yes
Sequential kernels (fine) 1.273 ms 0.0098 ms yes
Concurrent kernels (fine) 10.818 ms 0.0121 ms yes
Single kernel (coarse) 0.9185 ms 0.01203 ms yes
Sequential kernels (coarse) 1.223 ms 0.01508 ms yes
Concurrent kernels (coarse) 10.771 ms 0.016 ms yes

overflows. The benchmarks with buffer overflow in the ex-
isting work are open sourced [9]. We use GMOD to detect
buffer overflow in those benchmarks.

The first experiment evaluates the situation that the buffer
overflow occurs in a single kernel. The second experiment
considers GPU buffer overflow between two sequentially
launched kernels. The third one evaluates how one kernel
can influence the execution flow of another concurrently
running kernel. The last two experiments are a typical usage
mode of sharing GPU in cloud or HPC environment. The
three experiments focus on fine-grained, dynamic memory
management. To show the effectiveness of GMOD for coarse-
grained, dynamic memory management, we replace malloc
and free in the three experiments with cudaMalloc and cud-
aFree. In all experiments, once GMOD finds the overflow,
GMOD stops the execution of user kernels and outputs over-
flow information such as the user address where overflow
happens.

Table 3 shows the results. “kernel time” in the table is
the execution time of the attacked user kernel. In all cases,
GMOD successfully detects overflow and the detection la-
tency is very short, much shorter than kernel execution time.

7 RELATED WORK

Buffer overflow detection on CPU. Many static analysis
tools [13, 28] use bounds checking to detect buffer over-
flows by analyzing source code statically. This approach
suffers from high false positive or false negative rate. Ca-
nary was firstly proposed in StackGuard [7], which tackles
stack smashing attacks by placing a canary word before re-
turn address on stack. Address Space Layout Randomization
(ASLR) [4] randomizes addresses of stack and heap variables
for each execution, such that buffer overflow attacks can not
be achieved reliably. Cruiser [34] is a concurrent heap buffer
overflow detector on CPUs which is similar to GMOD but
runs on CPUs.

Security issues on GPU. The study in [5] shows that ad-
versaries can retrieve other processes’s data stored in GPU
memory by analyzing the memory dump of GPU devices.
Maurice et. al [14] highlight possible information leakage of
GPUs in virtualized and cloud environments. In [19], Pietro
et al. present a detailed analysis of information leakage in

PACT *18, November 1-4, 2018, Limassol, Cyprus

Bang Di', Jianhua Sun!, Dong Li?, Hao Chen!, and Zhe Quan!

20 T T T T 4.5
— g 60 |- ads 4b » gp !

~ 15| rg+GMOD(32) —~ 50 F ads+GMOD(32) . 35 gp+GMOD(32)
E o E 40 & 3 = =

10 - — b -
E gl % 45 2 & os

1 b
0 i i i 104 i 05 L i
4K 8K 12K 16K 20K 4K 8K 12K 16K 20K 4K 8K 12K 16K 20K

Number of user threads
(a) random-graph

Number of user threads

(b) add-string

Number of user threads

(c) grid-point

Figure 11: Study the performance impact of mallocN.

w1 GMOD(32)

Normalized execution time
[=}
D
T

%o~ %4l
ad&bgds-[f?d&ggd&rg[ﬁ~bfsgﬂ-bfsgp~ff,gp~rg’g~bfs’g~[ﬁ

Figure 12: Performance (execution time) of co-run
benchmarks with GMOD. Performance is normalized
by that without GMOD.

CUDA. Our paper is different from these work by focus-
ing on defeating buffer overflow and double free with low
performance overhead.

Multi-kernel concurrent execution on GPUs. In or-
der to improve the utilization of GPUs, researchers proposed
solutions to run multiple kernels from different users con-
currently on GPUs. In [21], Ravi et al. present a framework
to enable applications executing within virtual machines to
transparently share one or more GPUs. Pai et al. [17] pro-
pose transformations to convert CUDA kernels into elastic
kernels in order to gain fine-grained control over resource
usage. Current endeavors on multi-kernel execution focus on
improving resource utilization, security and reliability issues
are not concerned. Our GMOD complements the above work
by considering GPU security.

GPU memory overflow. Miele [15] presents a prelimi-
nary study of buffer overflow vulnerabilities in CUDA. An
attacker can overrun a buffer to corrupt sensitive data or
steer the execution flow by overwriting function pointers,
e.g., manipulating the virtual table of a C++ object. In [9], Di
et al. demonstrate the existence of stack and heap overflows,
although stack overflows have limited impact on security.
cuda-memcheck is a tool for checking CUDA memory er-
rors [16], and it can detect heap overflows mentioned above.
But its runtime overhead makes it impractical to be deployed
in production, and it was reported that the overhead incurred
by cuda-memcheck is roughly 120% [3].

12

clARMOR [10] is another GPU buffer overflow detector
using a canary-based design. It offers runtime protection
with reasonable overhead. Although both cIARMOR and
GMOD use the canary-based design, they are fundamentally
different. There is no simple method to slightly change clAR-
MOR to become GMOD. In particular, cARMOR performs
detection only after the kernel has completed. This means
that clARMOR cannot detect buffer overflow for fine-grained
memory allocation (i.e., malloc). GMOD can detect buffer
overflow during kernel execution, for both fine-grained and
coarse-grained memory allocation. In addition, detecting
buffer overflow during the kernel execution is challenging,
because we must avoid the impact of the detection on the
performance of user kernels. GMOD introduces a series of
techniques to avoid performance overhead.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we present the design and implementation of
a dynamic GPU memory overflow detector GMOD, which
performs always-on monitoring on dynamically allocated
buffers from concurrent user kernels. GMOD can effectively
identify buffer overflows with ignorable performance over-
head. Because GMOD is based on canary, it can not detect
unauthorized read access from untrusted users. We leave this
as future work. It is also interesting and challenging to ex-
tend GMOD to more complex scenarios, where the GPU and
CPU share virtual or physical memory space, and memory
operations are issued from both sides simultaneously.

ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation of China under grants 61572179, 61772183, and
61602166, and U.S. National Science Foundation (CNS-1617967,
CCF-1553645 and CCF-1718194). We thank anonymous re-
viewers for their valuable feedback.

REFERENCES

[1] 2000. S. Shield. Website. (2000).
stackshield/.

[2] K. Avijit, P. Gupta, and D. Gupta. 2004. TIED, LibsafePlus: Tools for
Runtime Buffer Overflow Protection. In Proceedings of the 13th USENLX
Security Symposium (SECURITY ’04). USNIX Association, 45-56.

http://www.angelfire.com/sk/

GMOD: A Dynamic GPU Memory Overflow Detector

[3] T. M. Baumann and J. Gracia. 2013. Cudagrind: Memory Usage Check-
ing for CUDA. In Tools for High Performance Computing 2013, Pro-
ceedings of the 7th International Workshop on Parallel Tools for High
Performance Computing. Springer, 67-78.

S. Bhatkar, D. C. DuVarney, and R. Sekar. 2003. Address Obfusca-

tion: An Efficient Approach to Combat a Broad Range of Memory

Error Exploits. In Proceedings of the 12th USENIX Security Symposium

(SECURITY ’03). USENIX Association, 291-301.

S. Bref3, S. Kiltz, and M. Schéler. 2013. Forensics on GPU Coprocessing

in Databases - Research Challenges, First Experiments, and Coun-

termeasures. In Proceeding of Workshop on Databases in Biometrics,

Forensics and Security Applications (DBforBFS), BTW-Workshops. Kollen-

Verlag, 115-129.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark

suite for heterogeneous computing. In Proceedings of the 2009 IEEE

International Symposium on Workload Characterization, ISWC 2009,

October 4-6, 2009, Austin, TX, USA.

[7] C. Cowan. 1998. StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-Overflow Attacks. In Proceedings of the 7th USENLX
Security Symposium, San Antonio, TX, USA, January 26-29, 1998.

[8] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,
Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter.
2010. The Scalable Heterogeneous Computing (SHOC) benchmark
suite.

[9] B.Di,]J. H. Sun, and H. Chen. 2016. A Study of Overflow Vulnerabilities

on GPUs. In Proceedings of the 13th International Conference on Network

and Parallel Computing (NPC ’16). Springer, 103-115.

C. Erb, M. Collins, and J. L. Greathouse. 2017. Dynamic buffer overflow

detection for GPGPUs. In Proceedings of the 2017 International Sympo-

sium on Code Generation and Optimization (CGO ’17). ACM, Austin,

—
S
=

—
w
=

—_
(=)
[V

[10

[t

TX, USA, 61-73.

[11] GMOD. 2018. GMOD. Website. (2018). https://github.com/aimlab/
GMOD.

[12] IBM. 2006. ProPolice detector. https:www.trl.ibm.com/projects/

security/ssp/. (2006).

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. L.

Wang. 2002. Cyclone: A Safe Dialect of C. In Proceedings of the General

Track of the Annual Conference on USENIX Annual Technical Conference

(USENIX ATC °02). USENIX Association, Berkeley, CA, USA, 275-288.

C. Maurice, C. Neumann, O. Heen, and A. Francillon. 2014. Confiden-

tiality Issues on a GPU in a Virtualized Environment. In Proceedings ot

the 18th International Conference on Financial Cryptography and Data

Security (FC °14). 119-135.

A. Miele. 2016. Buffer overflow vulnerabilities in CUDA: a preliminary

analysis. Journal of Computer Virology and Hacking Techniques 12, 2

(2016), 113-120.

NVIDIA. 2017. CUDA-MEMCHECK. (2017). https://developer.nvidia.

com/cuda-memcheck.

S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. 2013. Improving

GPGPU Concurrency with Elastic Kernels. In Proceedings of the Eigh-

teenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS ’13). ACM, 407-418.

B. Perens. 1987. Electric Fence. Website. (1987). http://linux.die.net/

man/3/efence.

R. D. Pietro, F. Lombardi, and A. Villani. 2016. CUDA Leaks: A Detailed

Hack for CUDA and a (Partial) Fix. ACM Transactions Embedded

Computing Systems 15, 1 (2016), 15:1-15:25.

[20] The PaX project. 2017. http://pax.grsecurity.net/. (2017).

[21] V.T.Ravi, M. Becchi, G. Agrawal, and S. Chakradhar. 2011. Supporting
GPU Sharing in Cloud Environments with a Transparent Runtime
Consolidation Framework. In Proceedings of the 20th International

(13

[t

(14]

(15

=

[16

=

(17

—

(18]

(19]

13

PACT ’18, November 1-4, 2018, Limassol, Cyprus

Symposium on High Performance Distributed Computing (HPDC ’11).

ACM, 217-228.

M. Song, Y. Hu, H. Chen, and T. Li. 2017. Towards Pervasive and User

Satisfactory CNN across GPU Microarchitectures. In IEEE International

Symposium on High Performance Computer Architecture (HPCA).

[23] J. A. Stratton, C. Rodrigues, I J. Sung, N. Obeid, L. W. Chang, N. Anssari,

G. D. Liu, and W. W. Hwu. 2012. Parboil: A revised benchmark suite for

scientific and commercial throughput computing. Center for Reliable

and High-Performance Computing (2012).

D. H. Tian, Q. Zeng, D. H. Wy, P. Liu, and C. Z. Hu. 2012. Kruiser: Semi-

synchronized Non-blocking Concurrent Kernel Heap Buffer Overflow

Monitoring. In 19th Annual Network and Distributed System Security

Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012.

Yash Ukidave, Fanny Nina Paravecino, Leiming Yu, Charu Kalra, Amir

Momeni, Zhongliang Chen, Nick Materise, Brett Daley, Perhaad Mistry,

and David R. Kaeli. 2015. NUPAR: A Benchmark Suite for Modern

GPU Architectures.

[26] A. V.Adinetz. 2014. Halloc GPU memory allocator. (2014). https:
//github.com/canonizer/halloc.

[27] M. Vinkler and V. Havran. 2015. Register Efficient Dynamic Memory
Allocator for GPUs. Computer Graphics Forum 8 (2015), 143-154.

[28] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. 2000. A First Step
towards Automated Detection of Buffer Overrun Vulnerabilities. In
Proceedings of Network and Distributed System Security Symposium
(NDSS °00). Internet Society, 3-17.

[29] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaon-
ing Ding, and Xiaodong Zhang. 2014. Concurrent Analytical Query
Processing with GPUs. Proc. VLDB Endow. 7, 11 (2014).

[30] wiki. 2017. Code Red. https://en.wikipedia.org/wiki/Code_Red_
(computer_worm). (2017).

[31] wiki. 2017. Morris Worm. https://en.wikipedia.org/wiki/Morris_worm.
(2017).

[32] wiki. 2017. Slammer. https://en.wikipedia.org/wiki/SQL_Slammer.
(2017).

[33] H. C. Wu, D. Li, and M. Becchi. 2016. Compiler-Assisted Workload

Consolidation for Efficient Dynamic Parallelism on GPU. In 2016 IEEE

International Parallel and Distributed Processing Symposium, IPDPS

2016, Chicago, IL, USA, May 23-27, 2016. 534-543.

Q. Zeng, D. H Wu, and P. Liu. 2011. Cruiser: concurrent heap buffer

overflow monitoring using lock-free data structures. In ACM Confer-

ence on Programming Language Design and Implementation.

[22]

[24]

[25]

[34]

